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 

Abstract— Automated vehicles have received great attention, 

since they offer the possibility of significantly increasing traffic 

safety, mobility and driver comfort. Current automation 

technology is still imperfect, therefore, there will still be situations 

in which the automation will not be able to handle and will request 

the driver to suspend non-driving tasks and take over control of 

the automated vehicle in a limited period of time. Accordingly, it 

is necessary to understand the effects of the lead time of take-over 

request as well as non-driving tasks on driver take-over. The 

present driving simulator experiment studied the effects of lead 

time and various realistic non-driving tasks on take-over behavior 

and driver acceptance to the automated vehicle. Results suggested 

optimal driver take-over performance when the lead time of the 

take-over request was 10-60s for general non-driving tasks. 

Specifically, take-over request with lead time at 10-60s led to lower 

crash rate, greater minimum time-to-collision (TTC), and lower 

lateral acceleration. However, a longer lead time (e.g., 15-60s) was 

necessary to achieve optimal driver acceptance even though 

drivers could successfully take over control with shorter lead time 

(e.g., 10s). In addition, driver take-over performance was 

significantly influenced by non-driving tasks. When more sensory 

modalities were occupied or when the cognitive load was very low, 

driver take-over performance was impaired, especially when the 

take-over request was too late (e.g., lead time was 3s). Potential 

applications of the results in designing of take-over request in 

automated vehicles were further discussed. 

 
Index Terms—Automated vehicles, Accident, Response time, 

Human-automation interaction  

 

I. INTRODUCTION 

UTOMATED vehicles, also known as self-driving vehicles, 

have received a great degree of attention in recent years, 

since an automated vehicle has the potential to sense its 

environment and navigate without human input, make driving 

decisions without intervention of a human and fulfill the 

transportation capabilities of a traditional car. Automated 

vehicle technology offers the possibility of significantly 

increasing traffic safety [1-6,8], mobility [1,2], and driver 

comfort [8,10,13], and reducing driver workload [7-13], 

congestion [1,2] and fuel emissions [1,2]. Google driverless 

vehicles have self-driven over 1 million miles [14] and car 
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manufacturers such as Mercedes-Benz, General Motors, and 

BMW have proposed their concept automated vehicles. It is 

predicted that automated cars will account for up to 75 percent 

of vehicles on the road by the year 2040 [15].  

In the latest federal automated vehicles policy, the National 

Highway Traffic Safety Administration has adopted the SAE 

International definitions for levels of automation [16]. Level 0 

automation requires the driver to control everything. Level 1 

automation can assist the driver conduct a part of driving task 

sometimes. Level 2 automation refers to automation of multiple 

control functions, however, drivers are still expected to 

continually monitor the driving scenario. At Level 3, automated 

vehicle enables the driver to cede full control in some instances 

but the driver must be available and ready to take over when the 

automated vehicle requests. Level 4 automated vehicle enables 

the driver to cede full control and thus s/he is able to engage in 

non-driving tasks under certain traffic conditions. At Level 5, 

the automated vehicle can perform all the driving tasks under 

all conditions. Level 4 and 5 automation no longer require the 

driver to be available for control. Since current automation 

technology is far from perfect, the automation is still unable to 

handle some situations (e.g., severe weather) and rare events 

which require more reliable and robust hardware and more real-

world miles accumulation [17], and thus Level 3 automated 

vehicles are still the focus of current researchers and vehicle 

manufacturers. When the drivers have to switch their attention 

back from the non-driving task to the manual driving, “out-of-

the-loop” issue emerges which may lead to overreliance, skill 

degradation, reduced situation awareness, etc. [7,18]. For 

example, Winter et al.’s review suggested that situation 

awareness (defined by Endsley as “the perception of the 

elements in the environment within a volume of time and space, 

the comprehension of their mearning, and the projection of their 

status in the near future” [70]) deteriorates in highly automated 

driving compared to manual driving if drivers are engaged in 

non-driving tasks [71].   

It is critical that the driver is aware of the request of the 

control transition from the automation system to the driver early 

enough to avoid potentially dangerous situations and too ensure 

a comfortable take-over process [19]; However, NHTSA has 

C. Wu is a full professor at Systems and Industry Engineering Department, 

University of Arizona (e-mail: changxuwu@email.arizona.edu; 
changxuwu6@gmail.com). 

The Effects of Lead Time of Take-Over 

Request and Non-Driving Tasks on Taking-

Over Control of Automated Vehicles  

Jingyan Wan and Changxu Wu 

A 

mailto:jingyanw@buffalo.edu
mailto:changxuwu@email.arizona.edu


 

2 

 

IEEE TRANS. ON HUMAN MACHINE SYSTEMS (ACCEPTED)                                             WAN AND WU, 2017 

not defined how early the automated vehicle should request the 

control transition. Existing research involving driver assistance 

systems showed that drivers provided sufficient lead time of the 

warning exhibited more gradual and stable response and higher 

trust to the systems. However, distraction, unnecessarily early 

response, and even trust issues were observed when the lead 

time was too long. When the lead time of the warning was too 

short, drivers may not have enough time to interpret the driving 

scenario or generate an appropriate response, which may lead 

to a higher probability of accident [20-28]. Therefore there 

should be an optimal range of lead time from the tradeoff 

between early and late warning messages, considering the 

issues of safety, response process and trust [29]. In the 

automated vehicle domain, there were only a few studies 

involving the timing of the take-over request and its effects on 

safe (presented by crash rate, maximum acceleration, and 

minimum time-to-collision (TTC)) and comfortable take-over 

performance (evaluated by subjective questionnaires). 

Damböck et al. suggested that a 6s lead time of the take-over 

request was sufficient for most visually distracted drivers. In 

[19], participants received take-over request with the lead time 

of 5s and 7s during Surrogate Reference Task (SURT) [31]. 

They found that with 7s lead time reactions were slower but 

better in quality compared with 5s [19]. Mok et al. distracted 

automated vehicle drivers with videos and found that the 

majority of drivers in the 5s or 8s conditions were able to safely 

negotiate the road hazard situation [32]. These research 

suggested that a lead time of the take-over request at 5s-6s could 

provide a safe response. However, a take-over request which 

generates “a safe response” does not necessarily result in 

positive experience. Even if no accident happens, a take-over 

request without sufficient time budget may increase driver 

workload, generate abrupt and erratic driver response, and harm 

driver trust and acceptance of the automated vehicle. Moreover, 

since the current automation technology is still under 

development, the current automated vehicle may not be capable 

to detect a system boundary 5s-6s in advance, especially under 

abnormal situations (e.g., automation failure, road blockage, 

severe weather conditions, and sudden maneuvers by another 

vehicle) [7]. Situations in which the driver needs to respond to 

emergent hazard still exist, but have not been addressed yet. On 

the other hand, safer and less critical situations in which the 

driver has enough time to respond in an unhurried and 

comfortable manner are still understudied [73]. With the fast 

development of intelligent transportation technology [33] and 

vehicle diagnostic technique, in the future, the automated 

vehicle should be able to detect system boundary very early. 

Therefore, wider range of lead time of the take-over request 

should be investigated to study driver response and subjective 

opinion under both emergent and non-emergent situations as 

well as to answer the much-asked question in automated vehicle 

domain “how long does it take drivers to get back in the loop?” 

Non-driving related tasks involved by the driver during 

automated driving also have influence on the take-over time and 

quality. During automated driving, drivers do not need to 

monitor the system and the traffic situation and are potentially 

free in occupying themselves with non-driving related tasks, 

such as reading, typing, and even sleeping. This can lead to a 

contingently serious deterioration of situation awareness caused 

by a shift in driver cognitive resources to the non-driving task 

without paying attention to the surrounding traffic situation and 

the vehicle status. If the automation system requires a take-over, 

lost situation awareness has to be regained in order to perform 

safely and comfortably. In addition, when being engaged into 

non-driving related tasks, the driver’s hands and feet may also 

be occupied. Longer time may be needed for the driver to switch 

back to the driving tasks mentally and physically. For example, 

when a take-over request is prompted, the driver will need to 

put the phone down and put the hands back on the steering 

wheel if s/he is playing games with a cell phone. Gold et al. and 

Lorenz, Kerschbaum, and Schumann distracted drivers using 

the visual-motoric SURT as the only one non-driving task and 

presented the take-over requests with the lead time of 5s and 7s 

[19,34]. Radlmayr, et al. compared non driving tasks of SURT 

and a cognitive demanding task named 2-Back-Task and 

observed similar effects of the two non-driving related tasks on 

the take-over process when the lead time was 7s [35]. In Gold, 

Berisha, and Bengler’s study, a cognitive-motoric task and a 

texting task were included besides the above two tasks [36]. 

Take-over requests with the lead time of 7.78s was used and 

results showed that take-over performance with a cognitive task 

was better compared with visual and motoric tasks in well-

practiced and noncomplex situations. Realistic non-driving 

tasks were also adopted in existing work. Merat et al. used the 

verbal “20 Questions Task” to simulate a phone conversation 

and the drivers were pre-warned about critical approaching 

incident via a sign placed 1,5000 meters before the incident. It 

was found that impaired performance was observed when 

drivers were asked to regain control of driving during 

automated driving [37]. Neubauer et al. distracted drivers with 

cell-phone use (making phone call, texting message, free 

choice, or control) and found that phone use during automated 

driving was associated with a faster braking response following 

transition to manual control [38]. Neubauer, Matthews, and 

Saxby studied driver fatigue in automated vehicles by assigning 

drivers to one of three media device conditions (control, cell 

phone, or trivia). The media devices were found help minimize 

the loss of driving task engagement and elevated distress 

produced by vehicle automation [39]. Another commonly used 

non-driving task was video watching, which was used in [32] 

and [40]. Drivers were distracted by such non-driving task in 

both studies and it was suggested that proper transition times 

and multimodal take-over requests should be considered to 

prompt safe and comfortable takeovers. Blommer et al. adopted 

both video and radio tasks with visual+audio takeover requests 

and it was found that compared with video watchers, radio 

listeners responded faster, looked to the road scene more, and 

they were more often looking forward at event onset [41].  

Miller et al. adopted both video and reading tasks with visual 

takeover requests but did not find significant difference in 

reaction time or minimum headway between video watchers 

and readers [42]. Reading task was also used to distract drivers 
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in [43] and the authors found that drivers experiencing 

automation were slower to identify the potential collision, but 

once identified, the collision was evaded more erratically than 

when drivers were in manual control. Moreover, task involving 

interacting with in-vehicle information system including 

pressing buttons and typing were included in [44,45]. Auditory 

takeover requests were found beneficial for drivers to switch 

back to the driving task in both studies. Most of the studies 

mentioned above concentrate on one or two tasks within the 

same experiment, which make it difficult to compare the effects 

of different tasks. There were a few studies looking at the 

underlying processes of engaging in tasks that have a 

differential effect on how drivers engage with automation [74-

76]. However, this is still an understudied area. Therefore, it is 

necessary to include more realistic non-driving tasks in one 

experiment in order to provide a broader perspective. 

The objectives of this research were to investigate the effects 

of lead time of the take-over request as well as the non-driving 

tasks on driver taking over control behavior in automated 

vehicles and find out the optimal range of lead time which 

would generated the optimal take-over behavior and best 

acceptance. 

II. EXPERIMENTAL DESIGN 

A. Participants 

Thirty-six participants (18 males, 18 females) ranging from 

age 18 to 44 (M=22.1, SD=5.0) years of age took part in this 

laboratory session. Their reported years of driving experience 

ranged from 2 years to 27 years (M=5.3, SD=5.0). All of them 

had normal or corrected-to-normal vision, valid driver licenses, 

and had driven within the past month. Participants were 

compensated with $10/hour. Written informed consent was 

obtained prior to the study. 

B. Apparatus 

In order to investigate how drivers interact with automated 

vehicles and their taking-over control behavior, a simulated 

automated vehicle platform was built using OpenDS driving 

simulator (see Fig. 1). OpenDS is an open source and platform-

independent driving simulator software with high performance 

scene graph based graphics API [46]. The driving simulator was 

installed on a Dell Workstation (Precision T5810, Intel Xeon 

CPU E5-1607 v3 3.10GHz). The driving simulator includes an 

adjustable seat, wheel and pedal supports, Logitech Driving 

Force GT® steering wheel with force feedback (Logitech Inc, 

Fremont, CA), a throttle pedal, and a brake pedal. Driving 

scenario was presented on three LCD monitors with 3840×1024 

pixel resolution. 

 
Fig. 1.  Simulated automated vehicle platform in the present study. 

 

The implemented simulated automated driving system could 

take over longitudinal and lateral control for a specific period, 

during which the driver did not have to continuously monitor 

the system and/or the road. When system boundaries occurred, 

the system could send out a takeover request to the driver with 

sufficient time to take over control. Besides longitudinal and 

lateral control, the automated driving system was able to 

perform lane changes and overtaking vehicles which moved 

slower than the set speed of the subject vehicle. The automated 

driving system would turn off when the driver steer or pressed 

the brake pedal. Moreover, with a button on the steering wheel 

the driver could turn the automated driving system on and off.  

Multimodal interfaces are able to provide larger information 

bandwidth to provide more effective support for time-sharing 

and attention management in complex scenarios, resulting in 

better task performance compared with unimodal displays [47-

55]. In order to effectively draw the driver’s attention back from 

various non-driving tasks under automated vehicle settings, 

multimodal interfaces were adopted in the current study. A 

LED strip in the green color was installed on the steering wheel, 

presenting visual information to the driver (see Fig. 1). Once 

the system boundary occurred, the LED would be turned off. A 

speaker in front of the participant provided auditory 

information as well as various sound effects. Auditory 

information was in the form of a digitized human female voice 

with a speech rate of ~150 words/min and loudness level of 

~70dB and driving sound effects with a loudness level of 

~55dB. Once the system boundary happened, a verbal takeover 

request would be sent out. Each warning message started with 

a signal word “Caution” and followed by the takeover request 

and the time available for the driver to regain complete control 

of the driving task and a safely executed response to the 

situation at hand [35]. The signal word was used for calling 

driver’s attention to the warning message and the upcoming 

collision event. The length of the auditory take-over request 

was 3s. Moreover, four vibration motors were placed (2 x 2) in 

the seat and four were placed (2 x 2) in the back support. For 

each vibration motor, the duration of the vibration was 250ms 

and the duration of inter-vibration was 100ms. The vibration 
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intensity setting followed the guidelines of [56]. Once the 

system boundary happened, the vibration motors would be 

activated in the order of back-left, back-right, seat-right, and 

seat-left. 

C. Questionnaires 

All participants were asked to complete a questionnaire 

before engaging in the driving task. The questionnaire was 

designed to capture participants’ demographic situation (such 

as age, gender, etc.), driving history (such as estimated 

cumulative driving mileage, the year a driver license was first 

issued, etc.).  

After each collision event, the simulation automatically 

paused and subject was asked to complete a subjective 

questionnaire regarding the driver’s acceptance of the 

automated vehicle system, which included the loudness of the 

auditory warning, the intensity and the comfort levels of the 

vibration, the driver’s workload when s/he took over control, 

how comfortable and how safe the subject felt about the 

automated vehicle, and the participant’s acceptance of the 

automated vehicle system. After each reading task, the 

participant needed to complete questions regarding the content 

of the reading material. After each video watching task, the 

participant needed to rate the level of interesting of the video 

from 0 to 10. Before and after the taking a nap task, participants 

were instructed to complete the Stanford Sleepiness Scale [58]. 

D. Driving Scenarios 

The Test Block was a simulated five-lane freeway 

environment. The subject vehicle was driving in the middle 

lane. There were running vehicles in the same direction. The 

take-over scenarios due to the system boundary were 

represented by 6 different common collision scenarios in the 

driver’s lane (e.g., traffic accident, a suddenly stopped lead 

vehicle, an obstacle). To avoid the crash, the driver could either 

slow down and stop on his/her lane, or change to the left or right 

lane. Since the obstacle (e.g., a suddenly stopped lead vehicle) 

would not move or disappear after the take-over request 

occurred, the driver needed to change to the left or right lane to 

keep going if s/he slowed down and stopped the vehicle on 

his/her lane. To make lane changing possible, the adjacent left 

or right lane was not occupied by any other vehicles. After 

passing the hazard event, the driver needed to continue the 

manual driving for a further 1,000 meter. At the end of such 

1,000 meter manual driving, the simulation automatically 

paused and the participant was instructed to complete the 

subjective questionnaire regarding the most recent takeover. 

Another 18 potential hazard events were designed that the 

automated vehicle can handle by itself. 

E. Non-driving Tasks 

In order to study a realistic case scenario in the automated 

vehicle setting, where the driver is out of the loop and not 

monitoring the automated vehicle system, six different non-

driving tasks were provided. They were reading, typing, playing 

games, and video watching via a smart phone, sleeping, and 

monitoring. These non-driving tasks came from the most 

common observed passengers’ tasks on public transportations 

[59-61] and a large scale opinion survey on what people would 

do instead of driving in a fully self-driving vehicle [62]. In the 

reading task, the participant was asked to read an article during 

automated driving and answer questions regarding the content 

of the reading material after taking over of the vehicle. In the 

typing task, the participant was instructed to type the same 

words as showed on the smart phone at the speed that they 

usually do during automated driving. In the video watching 

task, participants watched a video on the smart phone and 

answered questions regarding the content of the video after 

taking over. During automated driving, participants were asked 

to play a game using the smart phone in the task of playing 

game, relax and try to fall asleep in the task of taking a nap, and 

monitor the driving scenario as they were driving in the 

monitoring task. Participants were instructed to take over the 

driving task and be responsible for the safe driving when a 

takeover request occurred.   

F. Experiment Design and Procedures 

The current experiment used a two-factor experiment design 

with controlled lead time of the take-over request and non-

driving task as independent variables. The controlled lead time 

had 6 levels (3s, 6s, 10s, 15s, 30s, and 60s) which was 

equivalent to the time to collision (TTC) at the moment of the 

take-over request. There were also 6 different non-driving tasks 

(reading, typing, watching videos, playing games, taking a nap, 

and monitoring). In total, each subject went through 6 hazard 

events in which they needed to take over control due to 

automated system boundary. The 6 collision scenarios were 

randomly assigned to the 6 hazard events. The 6 different lead 

times and 6 different non-driving tasks were also assigned to 

the above 6 hazard events using a balanced incomplete design 

so that 1) if the non-driving tasks are disregarded, the 

arrangement becomes 6 balanced Latin square design, 2) if lead 

times are disregarded, the arrangement becomes 6 balanced 

Latin square design, and 3) each pair of (Leadtimei, Taskj) 

showed up in the nth event once [63]. 

In order to control the learning effects and prevent the driver 

to respond as soon as any auditory messages or traffic events 

occurred, auditory messages not relevant to any traffic events 

(e.g., ads, news) and normal traffic events (e.g., the emergence 

and departure of a lead vehicle, vehicles in other lanes, etc.) and 

potential hazard events which the automated vehicle could 

handle by itself were designed and randomly assigned between 

two adjacent hazard events. The time interval between two 

adjacent hazard events’ locations were randomly assigned 

between 5 minutes and 15 minutes. In addition, hazard 

vehicle/object would not appear or were blocked by lead 

vehicles. As the take-over request occurred, the hazard 

vehicle/object would appear and the lead vehicle would change 

lane if any.  

At first, participants were asked to sign an informed consent 

and fill out demographic, driving history, and personality 

questionnaires before engaging in the driving task. Next, 

participants were instructed on the operation of the driving 

simulator and how to turn on and off the automated driving 
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system. Then, subjects were asked to complete a practice drive 

in order to get familiar with the driving simulator. They were 

instructed to drive in the middle lane unless they had to overtake 

a slow lead vehicle or an obstacle in the middle lane. The 

scenario in the practice drive was designed similarly with the 

one in the formal drive (no hazard events or warning included). 

In the 10-minute practice drive, 5 non-driving related messages 

occurred. After completing the practice drive, subjects 

completed the test drive which included 6 collision scenarios. 

All participants were informed that the automated driving 

system was able to handle the driving task all the time. 

Therefore, they did not need to monitor the system or the road. 

G. Measurements 

The OpenDS driving simulator automatically collected time 

elapsed (s), longitudinal and lateral speed (km/h), longitudinal 

and lateral acceleration (m/s2), and distance (m). With such 

data, each participant’s take-over reaction time, minimum time-

to-collision (TTC), maximum lateral acceleration, and 

maximum longitudinal deceleration in each hazard event were 

calculated. The shorter one between the time to first steer (the 

time from when the take-over request occurred until the first 

steering input greater than 2º was applied) and the time to first 

pedal pressing (the time from when the take-over request 

occurred until the first pedal input greater than 10% was 

applied) was used as the take-over reaction time [35]. If the 

collision happened, minimum TTC was calculated by dividing 

the collision velocity by the average deceleration during the 

whole response process and was given a negative sign. Its 

absolute value represented how long the time period was, 

before which the driver should have started braking [72]. 

Minimum TTC could be regarded as an indicator of the 

potential collision severity.  Moreover, participants’ levels of 

engagement were calculated in each non-driving tasks which 

equaled to the participant’s performance of the non-driving task 

divided by the corresponding baseline performance (see 

Appendix I for the baseline performance). Specifically, after the 

reading task, the participant was asked to answers questions 

regarding the content of the reading material besides the 

subjective questionnaire when the simulation paused. The 

engagement of the reading task equaled to the accuracy of the 

driver’s answers divided by the baseline accuracy of the reading 

task. After the typing task, the experimenter would calculate the 

driver’s typing speed and the engagement of the typing task 

equaled to the driver’s typing speed divided by the baseline 

typing speed. After the video watching task, the participant was 

asked to answers questions regarding the content of the video 

when the simulation paused. The engagement of the video 

watching task equaled to the accuracy of the driver’s answers 

divided by the baseline accuracy of the video task. After the 

game task, the driver’s highest score was recorded and the 

engagement of the game task equaled to the driver’s highest 

score divided by the baseline highest score. After the taking a 

nap task, the driver’s sleepiness level was collected using 

Stanford Sleepiness Scale [58] and the level of engagement 

equaled to his/her sleepiness level divided by the baseline 

sleepiness level.  In order to make sure the participant was 

engaged into the non-driving tasks, the participant’s behavior 

data would be included into the analysis only if his/her 

performance of the non-driving task was not lower than 50% of 

the baseline. In this study, all participants' actually performance 

of the non-driving tasks was included in the analysis. 

In addition to objective data quantifying the drivers’ vehicle 

control inputs, subjective measures were collected including the 

perceived loudness and perceived vibration intensity of the 

take-over request, the driver’s workload during taking over 

control and acceptance of the automated vehicle. 

H. Data Analysis 

At first, a generalized linear model (GLM) (mixed ANOVA) 

was conducted using SPSS [57] with lead time and non-driving 

tasks as independent variables, objective measures (e.g., crash 

rate, response time, minimum TTC, and lateral acceleration) as 

well as the levels of engagement in non-driving tasks as 

dependent variables, and gender, age, driving experience, 

annual mileage, personality, subject’s alertness at the start of 

the automated driving, and order as covariates. Next, a GLM 

analysis (mixed ANOVA)  was conducted using subjective 

measures (perceived loudness, perceived vibration intensity, 

workload of taking over control, and the acceptance of the 

automated vehicle) as dependent variables, and gender, age, 

driving experience, annual mileage, personality, subject’s 

alertness at the start of the automated driving, and order as 

covariates to examine the effects of lead time of the take-over 

request and non-driving tasks on participants’ subjective 

opinions on the automated vehicle. 

III. RESULTS 

A. Objective Measures 

1) Crash rate: Results indicated significant effect of lead 

time on crash rate (F(5,175)=25.817, p<.001, partial η2=.425) 

(see Fig. 2). Tukey multiple comparison test suggested that 

early take-over request resulted in fewer crashes than did late 

take-over request. As shown in Fig. 2, an abrupt decrease of 

crash rate appeared with the lead time getting longer when the 

take-over request was late. The trend of such substantial change 

slowed down when the take-over request was early. 

Specifically, the crash rate was significantly higher at 3s than 

6s (p<.001), 10s (p<.001), 15s (p<.001), 30s (p<.001), and 60s 

(p<.001); significantly higher at 6s than 10s (p=.01), 15s 
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(p=.03), 30s (p=.01), and 60s (p=.03). In addition, main effect 

of task was not significant on crash rate. 

 
Fig. 2.  Main effect of lead time on crash rate. 
 

2) Response time: Main effect of task was significant on 

response time (F(5,175)=3.349, p=.006, partial η2=.087). 

Multiple comparison test showed that response time under 

monitoring task was significantly shorter than any other tasks 

which required mental resources invested into non-driving tasks 

(see Fig. 3). Specifically, monitoring task generated faster 

response time than reading (p=.002), typing (p=.005), video 

watching (p<.001), playing games (p=.012), and taking a nap 

(p=.045). In addition, there was no main effect of lead time on 

response time. 

 
Fig. 3.  Main effect of non-driving tasks on response time. 

 

3) Minimum TTC: Results indicated significant effect of 

lead time (F(5,175)=24.090, p<.001, partial η2=.408) as well as 

non-driving tasks (F(5,175)=2.896, p=.015, partial η2=.077) on 

minimum TTC (see Fig. 4 and Fig. 5), which suggested 

significantly different potential collision severity between the 

lead time conditions and non-driving tasks. Tukey test showed 

that minimum TTC was significantly lower when the lead time 

was 3s than 6s (p<.001), 10s (p<.001), 15s (p<.001), 30s 

(p<.001), and 60s (p<.001), which indicated significantly 

higher collision potential when the take-over request was too 

late. Also, minimum TTC under watching video task was 

significantly lower compared with reading (p=.005), playing 

game (p=.029), and monitoring tasks (p=.007); minimum TTC 

under taking a nap task was significantly lower compared with 

reading (p=.015) and monitoring tasks (p=.018). This indicated 

better take-over behavior when the participants conducted 

reading, playing game, as well as monitoring.  

 
Fig. 4.  Main effect of lead time on minimum TTC. 

 

 
Fig. 5 Main effect of non-driving tasks on minimum TTC. 

 

Moreover, the interaction between lead time and task had 

significant effect on minimum TTC (F(25,175)=2.738, p<.001, 

partial η2=.281) (see Fig. 6). Simple effect analysis showed that 

non-driving tasks had significant effect on minimum TTC when 

the lead time was 3s (F(5,175)=16.357, p<.001). When the lead 

time was 3s, minimum TTC was significantly higher under 

reading compared with typing (p=.002), watching video 

(p<.001), and taking a nap (p<.001); minimum TTC was 

significantly higher under monitoring task compared with 

typing (p=.001), watching video (p<.001), and taking a nap 

(p<.001); minimum TTC was significantly higher under typing 

compared with watching video (p=.001),  and taking a nap 

(p=.011); minimum TTC was significantly higher under 

playing game compared with watching video (p<.001) and 

taking a nap (p<.001).  This made the results in Fig. 4 even 

clearer, which was, the significantly greater collision potential 
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only appeared when the take-over request was too late. 

However, this effect did not appear when the take-over was 

relatively early and the drivers had more sufficient time to 

respond. 

 
Fig. 6.  Effects of lead time and non-driving tasks on minimum TTC. 

4) Maximum lateral acceleration: Results also indicated 

significant effect of lead time on maximum lateral acceleration 

(F(5,175)=7.575, p<.001, partial η2=.178). As shown in Fig. 7, 

a decrease of the maximum lateral acceleration appeared with 

the lead time getting longer when the take-over request was late. 

The trend of such substantial change slowed down when the 

take-over request was early. Specifically, the maximum lateral 

acceleration was significantly greater when the lead time was 

3s compared with 10s (p=.004), 15s (p<.001), 30s (p<.001), and 

60s (p<.001); significantly greater when the lead time was 6s 

compared with 15s (p=.007), 30s (p=.003), and 60s (p<.001); 

significantly greater at 10s compared with 60s (p=.034). In 

addition, there was no main effect of task on maximum lateral 

acceleration. 

 
Fig. 7.  Main effect of lead time on lateral acceleration. 

 

 

5) Maximum longitudinal deceleration: Significant effect of 

lead time on maximum longitudinal deceleration 

(F(5,175)=5.126, p<.001, partial η2=.128). As shown in Fig. 8, 

an increase of the maximum longitudinal deceleration was 

observed with the lead time getting longer except that a pit 

appeared when the lead time was 15s. Specifically, the 

maximum longitudinal deceleration was significantly greater 

when the lead time was 3s compared with 6s (p=.012), 10s 

(p=.001), 30s (p<.001), and 60s (p=.001); significantly greater 

when the lead time was 6s (p=.039) and 15s (p=.003) compared 

with 30s. In addition, there was no main effect of task on 

maximum longitudinal deceleration. 

 
Fig. 8.  Main effect of lead time on lateral acceleration. 

 

6) Engagement in the non-driving tasks: Main effect of lead 

time was not observed on participants’ level of engagement in 

the non-driving tasks. Non-driving tasks exhibited significant 

main effect on the levels of engagement of non-driving tasks 

(F(5,175)=24.265, p<.001, partial η2=.409) (see Fig. 9). 

Pairwise comparison showed that the level of engagement in 

reading was significantly lower than video watching (p<.001) 

and playing game (p<.001) tasks. Similarly, the level of 

engagement in typing task was significantly lower than video 

watching (p<.001) and playing game (p=.004). Participants’ 
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engagement level in taking a nap was significantly lower than 

tasks of video watching (p<.001) and playing game (p<.001). 

Also, the level of engagement in monitoring was significantly 

higher than any other non-driving tasks (p<.001 for each pair-

wise comparison). 

 

 
Fig. 9.  Main effect of non-driving tasks on the levels of engagement in non-
driving tasks. 

 

 

B. Subjective Measures 

1) Perceived Loudness of Warning Messages: Non-driving 

task had significant effect on perceived loudness 

(F(5,175)=6.198, p<.001, partial η2=.150) (see Fig. 10). 

Specifically, the perceive loudness of the auditory take-over 

request was significantly lower under watching video task 

compared with other tasks (p<.001 for each pair-wise 

comparison). This made sense since the sound of the video 

weakened the loudness of the auditory warning.  

 

Fig. 10.  Main effect of non-driving tasks on perceived loudness of the auditory 

take-over request. 

2) Acceptance: Lead time had significant effects on 

acceptance (F(5,175)=12.976, p<.001, partial η2=.270) (see Fig. 

11). Tukey test showed that subjects’ acceptance was 

significantly lower at 3s than other levels of lead times (p<.001 

for each pair-wise comparison); significantly lower at 6s than 

15s (p=.016) and 60s (p=.032); significantly lower at 10s than 

15s (p=.036). Results indicated that driver acceptance to the 

automated vehicle was low when they did not have enough time 

to respond to the take-over request. Their acceptance increased 

with the prolonging lead time and stabilized when the take-over 

request was very easy. 

 

 
Fig. 11.  Main effect of lead time on the acceptance of the automated vehicle. 

 

3) Workload: There was not main effect of lead time or non-

driving tasks nor the interaction effect between the two factors 

on driver workload.  
 

IV. DISCUSSION 

This study investigated the effects of lead time of take-over 

request and non-driving tasks on driver take-over behavior and 

subjective opinion on automated vehicles. Compared with the 

existing works in automated vehicle domain, the range of the 

lead time in the present work was widely extended. Multiple 

realistic non-driving tasks were also addressed in the current 

study considering possible driver behavior in the future 

automated vehicles in order to provide a broader perspective. 

With the rapid development of intelligent transportation 

systems (ITSs), there will likely be a very low chance a system 

boundary of automated vehicles occur in reality. In order to 

control learning effects and generate realistic responses, 

auditory messages not associated with collision events and 

normal traffic events were designed and randomly assigned 

between two adjacent hazard events. 

The results indicated that the lead time of take-over request 

would affect driver take-over behavior and subjective opinion 

on the automated vehicle. The optimal take-over behavior was 

observed when the lead time was equal or longer than 10s. 

Specifically, significant low crash rate was observed when it 

was equal or long than 10s and significantly greater minimum 

TTC was observed when it was equal or longer than 6s. In 

addition, lead time ranging from 10 to 60s led to more gradual 
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maneuvering, which was revealed by the smoother lateral 

acceleration. Such results suggested that drivers would need 

sufficient lead time to better understand and respond to the 

takeover requests and the collision event, and, therefore, to 

generate better take-over behavior. Moreover, such gradual 

lateral maneuvering could reduce the risk of hitting road users 

in the adjacent lane. The optimal lead time in this work was 

longer than 4.5-6s which was obtained from [64] under 

connected vehicle settings and longer than 5-7s which was 

found from [19]. This was because drivers were engaged in 

realistic non-driving tasks during automated driving, and, 

therefore, they would need longer time to shift their attention 

from non-driving tasks to the driving task, put down the smart 

phone, put their hands and feet back onto the steering wheel and 

pedal, regain situation awareness, and take over control. 

Besides hazard ahead in the driver’s lane, other vehicles could 

be driving in the adjacent lane (either left lane or right lane) at 

the onset of take-over requests in the current study. Therefore, 

drivers needed to spend more time on checking whether the 

adjacent lanes (left or right lane) were clear and making 

decisions of the direction of swerving. With too short lead time, 

at the onset of take-over requests, the driver may not have 

sufficient time to determine the direction in which s/he should 

swerve and collisions may occur with vehicles driving in the 

adjacent lane. Such collisions were observed in the current 

experiment.  

Generally speaking, take-over requests given too late (the 

lead time was shorter than 10s) would do harm to the take-over 

behavior. The higher crash rate associated with too late 

takeover requests suggested that drivers did not have enough 

time to respond safely. Specifically, too short lead time 

generated lower minimum TTC and maximum longitudinal 

deceleration, which suggested inadequate brakes and greater 

potential collision severity. In addition, higher maximum lateral 

acceleration suggested that drivers swerved aggressively when 

the lead time was too short. However, due to the limitation of 

the technology under various conditions, takeover request with 

the lead time equal or longer than 10s may not be guaranteed. 

When the lead time is short, short auditory stimuli may be more 

effective than verbal takeover request in generating faster 

understanding and takeover response. Existing studies on driver 

assistance systems suggested that a warning provided too early 

without visual feedback may be treated as a false alarm or 

nuisance alarm, fail to assist the driver, and instead generate an 

inappropriate braking response [22-28]. It is of interested that 

such cases were not observed in the current study. The 

participant may understand that the system boundary of 

automated vehicle does not necessarily result from any hazard 

road users. The automation system can shut down simply 

because of the malfunction of sensors, cameras, etc. Moreover, 

after take-over requests occurred, some participants tried to 

switch the vehicle into automated driving but failed. Such cases 

also confirmed that the automation system was not functioning. 

Therefore, all subject did not treat any take-over requests 

including very early requests as false alarm. Although the crash 

rate was significantly lower when the lead time was equal or 

longer than 10s, the optimal acceptance to the automated 

vehicle did not reach the optimal and stable value until the lead 

time increased to 15s. This suggested that drivers expected 

sufficient time to complete take over control comfortably with 

high quality rather than just avoiding crash. The comfortable 

and high-quality take-over behavior coming with lead time at 

15s or longer was also supported by the trend of maximum 

lateral acceleration. Besides the timing of the activation of the 

take-over requests, in the future the warning system should also 

be able to conduct real-time calculation of the “real” TTC and 

use such information in the verbal take-over requests. With the 

“real” TTC, the warning system would be able to deliver more 

accurate information and preserve driver acceptance to the 

system [69].  

Besides lead time, the effects of non-driving tasks were also 

analyzed. The shortest response time was observed when the 

driver took over control after monitoring the driving scenario. 

Greater minimum TTC was observed when the driver took over 

control after conducting monitoring and reading tasks. Video 

watching and taking a nap led to lower minimum TTC. When 

the take-over request was very late (e.g., 3s), greater minimum 

TTC was also observed with monitoring and reading tasks and 

lower minimum TTC with video watching and taking a nap 

tasks. These suggested that non-driving tasks such as 

monitoring and reading which consumed less mental and 

physical resource and took shorter time when the driver 

switching back to the driving task. Non-driving tasks similar 

with typing and playing game in the current study would 

increase complexity within the take-over situations since they 

occupy the driver’s hands and require information processing 

and motor response to the information. Therefore, in addition 

to the conclusion of [36] that driving performance with 

cognitive demanding tasks were worse if following take-over 

control, physical demand of non-driving tasks should also be 

considered when designing take-over request. Taking a nap 

increased driver sleepiness, and, therefore, prolonged driver 

response time and undermined take-over behavior, which was 

in agreement with previous studies on the generalized-

cognitive-slowing hypotheses [65]. Therefore, the automated 

vehicle may need to provide longer take-over time to the driver 

when sleepiness is detected. The reason that video watching led 

to the worse take-over behavior may be that the driver could not 

receive clear and complete verbal request. Another reason of 

the better takeover behavior reading, typing, and playing a 

game could be that they are self-paced tasks and they can more 

easily be stopped and resumed compared with video watching 

and taking a nap which run at their own course. While when the 

participant was watching a video, s/he may be reluctant to look 

away of disengage because s/he would miss something of the 

video. 

Better take-over control behavior can be achieved by sending 

the take-over control request as early as possible. Rather than 

5-6s lead time of take-over request recommended by existing 

works in automated vehicle settings, with realistic non-driving 

tasks considered, the present study suggested lead time at 10s 

or longer. What is more, to ensure a comfortable and high-

quality take-over, longer lead time should be provided to the 

driver, especially if s/he is conducting cognitive and physical 

demanding non-driving tasks, non-driving tasks which run at 

their own course, his/her sensory channels are occupied by non-

driving tasks, or his/her vigilance was very low. Such findings 

can be regarded as important recommendations to the design of 
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automated vehicle and will drive the development of ITSs (e.g., 

LIDAR, cameras), infotaiment systems (e.g., pairing with the 

driver’s cell phone and identifying the active app), and driver 

monitoring systems (DMSs) (e.g., cameras, gesture sensors, 

pressure sensors, and wireless non-contact EEG sensors [66-

68]). The take-over behavior and driver safety will be further 

enhanced by collecting the driver’s non-driving task 

information. 

The limitations of the present study will be discussed. First, 

verbal takeover request requested the driver to take more time 

to understand and respond. Results suggested that when the 

takeover request was too late (e.g., the lead time shorter than 

10s), short auditory stimuli such as tone should be adopted to 

generate faster takeover response. However, when the lead time 

was relatively long, verbal takeover requests are better to be 

adopted in order to deliver specific information. Second, this 

study only included the six most common non-driving tasks 

(reading, typing, watching video, playing game, taking a nap, 

and monitoring) from the most common observed passengers’ 

tasks on public transportations [59-61] and a large scale opinion 

survey [62]. The optimal lead time obtained in this study should 

be applied to the automated driving involving of non-driving 

tasks, but not to all the non-driving tasks. Drivers involved in 

more demanding tasks, such as sleeping, will definitely need 

longer lead time to regain control safely and comfortably. In 

many existing studies, researchers have investigated take-over 

behavior under specific conditions (e.g., two or three non-

driving tasks) and they have been trying to establish a gold 

standard performance in the take-over behavior in automated 

vehicle setting [19,34-45]. In the current study, similar 

measures of take-over behavior to those studies were used with 

extended, but still specific, use cases. More use-case specific 

standards should be developed before understanding what 

drivers’ true capabilities and limitations are in such situations. 

Third, though the visual, auditory, and tactile take-over requests 

were activated at the same time, the length of the take-over 

requests in each modality was different. The LED was turned 

off until the end of the hazard event as the visual cue. The 

vibration motors were activated for 1.3s in order to call the 

driver’s attention [56] in case that the driver’s visual/auditory 

channel was occupied. Auditory take-over requests delivered 

the detailed take-over request information, therefore, they took 

the longest time. Fourth, there may be differences between real 

road driving and simulated driving and the subject may not 

perceive the real risk of driving in traffic or the aspects of 

drivers’ dynamic vehicle control in a driving simulator. The 

main goal of the current study was to compare differences of 

driver take-over behavior between different levels of lead time 

and non-driving tasks. High fidelity driving simulator may be 

needed to extrapolate the results of the current study to the real 

driving. Also, the driver may exhibit different behavior in 

laboratory controlled experiment compared with real road 

driving. Therefore, real road test may also be needed to 

extrapolate the results of the current study. 

In the future study, short auditory stimuli such as tone should 

be adopted to study driver take-over behavior under emergent 

situations. More non-driving tasks should also be taken into 

account to understand take-over behavior under different 

situations. In addition, high fidelity driving simulator and field 

study should be conducted to extrapolate the findings of the 

current study in the future. Besides, other factors of take-over 

such as loudness and the vibration pattern and different traffic 

situations such as traffic density will need to be addressed in the 

future work in order to study their influence on driver taka-over 

behavior in automated vehicles. Still, the present study 

constituted a first step towards a comprehensive understanding 

of lead time and non-driving tasks and their effects on human 

take-over behavior in automated vehicles.  

APPENDIX I 

In order to obtain the baseline of the non-driving task 

performance, before conducting the experiment, 5 participants 

with similar age (M=23.0, SD=3.5) and driving experience 

(M=5.0, SD=2.9) to the subjects in the formal task were 

recruited to complete the same non-driving tasks including 

reading, typing, video watching, playing games, and taking a 

nap without conducting the driving task. The average 

performance of those 5 participants was calculated as the 

baseline of the non-driving task performance. None of those 5 

participants were included in the following formal automated 

driving experiment in order to prevent the learning effects of 

non-driving tasks.    

Among those 5 participants, the average accuracy of the 

answers to the questions regarding the content of reading 

materials in the reading tasks was 88%. The average typing 

speed in the typing task was 29.6 words/minute. The average 

accuracy of the video materials description was 94%. The 

average highest score of the game was 10,000. The average 

sleepiness level was 3.6.  

The level of engagement of the non-driving task (reading, 

typing, video watching, playing a game, and taking a nap) in the 

formal driving experiment equaled to the participant’s 

performance of the non-driving task divided by the 

corresponding baseline performance. The level of engagement 

of the monitoring task equaled to the participant’s eyes-on-

screen time divided by the duration in which the vehicle was 

driving automatically. In order to make sure the participant was 

engaged into the non-driving tasks, the participant’s behavior 

data would be included into the analysis only if his/her 

performance of the non-driving task was not lower than 50% of 

the baseline. 
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